Sains Malaysiana 53(7)(2024): 1589-1603

http://doi.org/10.17576/jsm-2024-5307-09

 

Physiological and Yield Performance of Commercial Rice Varieties under Cyclic Water Stress in Malaysia

(Fisiologi dan Prestasi Hasil Varieti Padi Komersial di bawah Tekanan Air Kitaran di Malaysia)

 

NURUL- IDAYU ZAKARIA1, ZULKARAMI BERAHIM1, MUHAMMAD ASYRAF MD HATTA2, MOHAMAD HUSNI OMAR1, RHUSHALSHAFIRA ROSLE2, MOHD RAZI ISMAIL3,*, NIK NORASMA CHE’YA2, ASYRAF AZMI2 & MOHAMMAD IQBAL HAKIM MOHD AZHAN2

 

1Laboratory of Climate- Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Received: 5 December 2023/Accepted: 4 June 2024

 

Abstract

The production of drought-tolerant rice varieties in Malaysia and the information regarding the response of local varieties to water stress are still lacking. Therefore, this experiment was conducted to determine the growth, physiological performance, molecular response, and yield of ten available rice varieties, namely MR 219, MR 220-CL2, MR 297, MRQ 76, Vietnam Hybrid, UKM RC2, UKM RC8, Putra 1, MR 303, and MR 307, under ten days of cyclic water stress. The experiment was arranged in a Randomized Complete Block Design (RCBD) with three replications. Plant height, tiller number, photosynthesis rate, stomatal conductance, transpiration rate, chlorophyll content, biomass partitioning, genotyping of SSR markers, days of harvest, and yield component were measured. Results showed that water limitations reduced tiller number per hill, while plant height, leaf dry matter, and panicle length were enhanced. It was found that MR 297 had the shortest plant height, while MR 220-CL2 had a short maturity period, a shorter panicle length, and an enhanced filled grain percentage. Putra 1 and UKM RC8 showed a higher photosynthesis rate, stomatal conductance, and transpiration rate under water limitation at 99 days after sowing (DAS). Under well-watered conditions, the total grain weight per pot of Putra 1 and MR 307 was enhanced compared to MR 219. Meanwhile, under water limitation, the total grain weight per pot of UKM RC2, MR 220-CL2, MR 307, MR 297, and Vietnam Hybrid was comparable to MR 219 and slightly enhanced in UKM RC8, Putra 1, and MR 303. Among the tested varieties, MR 220-CL2 can be selected based on early maturity criteria for the potential development of drought-tolerant varieties.

 

Keywords: Drought; Oryza sativa; photosynthesis rate; stomatal conductance; yield component

 

Abstrak

Pengeluaran varieti padi tahan kemarau di Malaysia dan maklumat mengenai tindak balas varieti tempatan terhadap tekanan air masih kurang. Justeru, penyelidikan ini dijalankan untuk menentukan pertumbuhan, prestasi fisiologi, tindak balas molekul dan hasil sepuluh varieti padi yang ada, iaitu MR 219, MR 220-CL2, MR 297, MRQ 76, Vietnam Hybrid, UKM RC2, UKM RC8, Putra 1, MR 303 dan MR 307 di bawah kitaran sepuluh hari tekanan air. Uji kaji telah disusun dalam Reka Bentuk Blok Lengkap Rawak (RCBD) dengan tiga ulangan. Ketinggian tanaman, kadar fotosintesis, kekonduksian stomata, kadar transpirasi, kandungan klorofil, pembahagian biojisim, genotaip penanda SSR, hari penuaian dan komponen hasil diukur. Keputusan menunjukkan bahawa air yang terhad mengurangkan bilangan anak setiap rumpun, manakala ketinggian tanaman, berat kering daun dan panjang tangkai bertambah baik. Didapati bahawa MR 297 mempunyai ketinggian terendah manakala MR 220-CL2 mempunyai tempoh matang yang pendek, panjang tangkai yang lebih pendek dan peratusan biji berisi yang dipertingkatkan. Putra 1 dan UKM RC8 menunjukkan kadar fotosintesis, kekonduksian stomata dan kadar transpirasi adalah lebih tinggi di bawah tekanan air pada 99 hari selepas menyemai (DAS). Di bawah keadaan pengairan yang baik, jumlah berat bijirin setiap pot di dalam Putra 1 dan MR 307 telah dipertingkatkan berbanding MR 219. Sementara itu, di bawah tekanan air, jumlah berat bijirin setiap pot UKM RC2, MR 220-CL2, MR 307, MR 297 dan Vietnam Hibrid adalah setanding dengan MR 219 dan dipertingkatkan sedikit dalam UKM RC8, Putra 1 dan MR 303. Antara varieti yang diuji, MR 220-CL2 boleh dipilih berdasarkan kriteria kematangan awal untuk potensi pembangunan varieti tahan kemarau.

 

Kata kunci: Kadar fotosintesis; kekonduksian stomata; kemarau; komponen hasil; Oryza sativa

 

REFERENCES

Aboulila, A.A. 2015.  Marker assisted selection for genetic improvement of drought tolerance in hybrid rice (Oryza sativa L.). International Journal of Biotechnology Research 3(3): 045-054.

Afiukwa, C.A.A., Faluyi, J.O., Atkinson, C.J., Ubi, B.E.U., Igwe, D.O. & Akinwale, R.O. 2016. Screening of some rice varieties and landraces cultivated in Nigeria for drought tolerance based on phenotypic traits and their association with SSR polymorphisms. African Journal of Agricultural Research 11(29): 2599-2615. https://doi.org/10.5897/AJAR2016.11239 

Asmuni, M.I., Ismail, A. & Abd Aziz, S.N. 2019. Morpho-physiological responses of rice towards submergence tolerance. International Journal of Agriculture and Biology 22(1): 35-42. https://doi.org/10.17957/IJAB/15.1030

Barik, S.R., Pandit, E., Mohanty, S.P., Nayak, D.K. & Pradhan, S.K. 2020. Genetic mapping of physiological traits associated with terminal stage drought tolerance in rice. BMC Genetics 21(1): 1-12. https://doi.org/10.1186/s12863-020-00883-x

Bashier, A., Masanga, J., Kariuki, W. & Runo, S. 2018. Simple sequence repeat (SSR) markers linked to drought tolerant traits in selected Sudanese rice (Oryza sativa L.) genotypes. African Journal of Biotechnology 17(20): 649-659. https://doi.org/10.5897/AJB2018.16466

Berahim, Z., Dorairaj, D., Saud, H.M. & Ismail, M.R. 2019. Regulation of sucrose synthase and its association with grain filling in spermine-treated rice plant under water deficit. Journal of Plant Interactions 14(1): 464-473.  https://doi.org/10.1080/17429145.2019.1657189

Cabuslay, G.S., Ito, O. & Alejar, A.A. 2002. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science 163(4): 815-827. https://doi.org/10.1016/S0168-9452(02)00217-0

Cheng, F., Bin, S., Iqbal, A., He, L., Wei, S., Zheng, H., Yuan, P., Liang, H., Ali, I., Xie, D., Yang, X., Xu, A., Ullah, S. & Jiang, L. 2022. High sink capacity improves rice grain yield by promoting nitrogen and dry matter accumulation. Agronomy 12: 1688. https://doi.org/10.3390/agronomy12071688

Darmadi, D., Junaedi, A., Sopandie, D., Lubis, I. & Homma, K. 2021. Water-efficient rice performances under drought stress conditions. AIMS Agriculture and Food 6(3): 838-864. https://doi.org/10.3934/agrfood.2021051

Department of Agriculture (DOA). 2021. Crop Statistic Booklet (Food Crop Sub-sector). Department of Agriculture. Putrajaya: Ministry of Agriculture and Food Industries Malaysia. pp: 21-22 (In Malay).

Dien, D.C., Mochizuki, T. & Yamakawa, T. 2019. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in rice (Oryza sativa L.) varieties. Plant Production Science 22(4): 530-545. https://doi.org/10.1080/1343943X.2019.1647787

Dorairaj, D. & Govender, N.T. 2023. Rice and paddy industry in Malaysia: Governance and policies, research trends, technology adoption and resilience. Frontiers in Sustainable Food Systems 7: 1093605. https://doi.org/10.3389/fsufs.2023.1093605    

Doyle, J. 1991. DNA protocols for plants. In Molecular Techniques in Taxonomy. NATO ASI Series, vol 57, edited by Hewitt, G.M., Johnston, A.W.B. & Young, J.P.W. Berlin, Heidelberg: Springer. pp. 283-293. https://doi.org/10.1007/978-3-642-83962-7_18

Elixon, S., Asfaliza, R., Othman, O., Norsuha, M.S., Maisarah, M.S., Allicia, J. & Shahida, H. 2017. Evaluation on yield, yield component and physico-chemicals of advanced rice lines. Journal of Tropical Agriculture and Food Science 45(2): 131-143.

FAOSTAT. 2021. Production Data, FAO, accessed 28th December 2022.   www.fao.org/faostat/en/#data

Farooq, M., Wahid, A., Lee, D.J., Ito, O. & Siddique, K.H. 2009. Advances in drought resistance of rice. Critical Reviews in Plant Sciences 28(4): 199-217. https://doi.org/10.1080/07352680902952173

Freeg, H.A., Anis, G.B., Abo-Shousha, A.A., El-Banna, A.N. & El-Sabagh, A. 2016. Genetic diversity among some rice genotypes with different drought tolerance based on SSR Markers. Cercetari Agronomice in Moldova 49(3): 39-50. https://doi.org/10.1515/cerce-2016-0024

Hashim, M.F.C., Haidar, A.N., Nurulhuda, K. & Melissa, F. 2022. Physiological and yield responses of five rice varieties to nitrogen fertilizer under farmer's field in IADA KETARA, Terengganu, Malaysia. Sains Malaysiana 51(2): 359-368. https://doi.org/10.17576/jsm-2022-5102-03

Kamarudin, Z.S., Shamsudin, N.A.A., Othman, M.H.C., Shakri, T., Tan, L.W., Sukiran, N.L., Isa, N.M., Rahman, Z.A. & Zainal, Z. 2020. Morpho-physiology and antioxidant enzyme activities of transgenic rice plant overexpressing ABP57 under reproductive stage drought condition. Agronomy 10(10): 1530. https://doi.org/10.3390/agronomy10101530

Kamoshita, A., Rodriguez, R., Yamauchi, A. & Wade, L. 2004. Genotypic variation in response of rainfed lowland rice to prolonged drought and rewateringPlant Production Science 7(4): 406-420. https://doi.org/10.1626/pps.7.406

Khush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology 35(1): 25-34. https://doi.org/10.1023/A:1005810616885

MADA. 2015. Rice Check. Muda Agriculture Development Authority (MADA), Malaysia. p. 7.

MARDI. 2002. MR 219, A New High Yielding Rice Variety with Yields of More than 10 MT/ Ha. Serdang: MARDI. 

Mehmood, S., Ud Din, I., Ullah, I., Mohamed, H.I., Basit, A., Khan, M.N., Shah, S.S.H. & ur Rehman, A. 2021. Agro-morphological and genetic diversity studies in rice (Oryza sativa L.) germplasm using microsatellite markers. Molecular Biology Reports 48(11): 7179-7192. https://doi.org/10.1007/s11033-021-06710-5

Miah, G., Rafii, M.Y., Ismail, M.R., Puteh, A.B., Rahim, H.A. & Latif, M.A. 2015. Recurrent parent genome recovery analysis in a marker-assisted backcrossing program of rice (Oryza sativa L.). Comptes Rendus Biologies 338(2): 83-94. https://doi.org/10.1016/j.crvi.2014.11.003

Ministry of Agriculture and Food Industries (MAFI). 2021. Executive Summary National Agrofood Policy 2021-2030 (NAP 2.0) Agrofood Modernisation: Safeguarding the Future of National Food Security. Putrajaya: Ministry of Agriculture and Food Industries Malaysia. p. 4.

Ministry of Agriculture and Food Industries (MAFI). 2019. Agrofood Statistics 2019. Putrajaya: Ministry of Agriculture and Food Industries Malaysia. p. 10.

Osakabe, Y., Osakabe, K., Shinozaki, K. & Tran, L.S.P. 2014. Response of plants to water stress. Frontiers in Plant Science 5: 86. https://doi.org/10.3389/fpls.2014.00086

Pan, Y., Lu, Z., Lu, J., Li, X., Cong, R. & Ren, T. 2017. Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiology and Biochemistry 113: 110-121. https://doi.org/10.1016/j.plaphy.2017.01.027

Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S. & O’toole, J.C. 2002. Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands: 2. Selection of drought resistant genotypes. Field Crops Research 73(2-3): 169-180. https://doi.org/10.1016/S0378-4290(01)00195-2

Pathaichindachote, W., Panyawut, N., Sikaewtung, K., Patarapuwadol, S. & Muangprom, A. 2019. Genetic diversity and allelic frequency of selected Thai and exotic rice germplasm using SSR Markers. Rice Science 26(6): 393-403. https://doi.org/10.1016/j.rsci.2018.11.002

Salunkhe, A.S., Poornima, R., Prince, K.S.J., Kanagaraj, P., Sheeba, J.A., Amudha, K., Suji, K.K., Senthil, A. & Babu, R.C. 2011. Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis. Molecular Biotechnology 49(1): 90-95. https://doi.org/10.1007/s12033-011-9382-x

Shamsudin, N.A.A., Swamy, B.P., Ratnam, W., Cruz, S., Teressa, M., Raman, A. & Kumar, A. 2016. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genetics 17(1): 1-14. https://doi.org/10.1186/s12863-016-0334-0

Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., De Groot, S., Soole, K. & Langridge, P. 2017. Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science 8: 1950. https://doi.org/10.3389/fpls.2017.01950

Sunian, E., Ramli, A., Jamal, M.S., Saidon, S.A. & Kamaruzaman, R. 2022. Development of high yielding varieties for food sustainability production. MARDI Technology Bulletin Special Plant Breeding Colloquium 30: 83-97.

Susanto, U., Rohaeni, W.R., Yunani, N. & Prastika, D. 2019. Drought tolerant selection of rice genotypes using raised bed system. In IOP Conference Series: Earth and Environmental Science 250(1): 012049. IOP Publishing. https://doi.org/10.1088/1755-1315/250/1/012049

Susilowati, M., Aswidinnoor, H., Enggarini, W. & Trijatmiko, K.R. 2017. Identification of a major quantitative trait locus for grain weight in rice using microsatellite marker. Makara Journal of Science 21(4): 2. https://doi.org/10.7454/mss.v21i4.6590  

Talei, D., Valdiani, A., Maziah, M. & Mohsenkhah, M. 2013. Germination response of MR 219 rice variety to different exposure times and periods of 2450 MHz microwave frequency. The Scientific World Journal 2013. https://doi.org/10.1155/2013/408026

Tan, B.T., Fam, P.S., Firdaus, R.R., Tan, M.L. & Gunaratne, M.S. 2021. Impact of climate change on rice yield in Malaysia: A panel data analysis. Agriculture 11(6): 569. https://doi.org/10.3390/agriculture11060569

Tanweer, F.A., Rafii, M.Y., Sijam, K., Rahim, H.A., Ahmed, F. & Latif, M.A. 2015. Current advance methods for the identification of blast resistance genes in rice. Comptes Rendus Biologies 338(5): 321-334. https://doi.org/10.1016/j.crvi.2015.03.001

Vaghefi, N., Shamsudin, M.N., Radam, A. & Rahim, K.A. 2016. Impact of climate change on food security in Malaysia: Economic and policy adjustments for rice industry. Journal of Integrative Environmental Sciences 13(1): 19-35. https://doi.org/10.1080/1943815X.2015.1112292

Wu, D.H., Chen, C.T., Yang, M.D., Wu, Y.C., Lin, C.Y., Lai, M.H. & Yang, C.Y. 2022. Controlling the lodging risk of rice based on a plant height dynamic model. Botanical Studies 63(1): 1-12. https://doi.org/10.1186/s40529-022-00356-7

Xu, Y., Beachell, H. & McCouch, S.R. 2004. A marker-based approach to broadening the genetic base of rice in the USA. Crop Science 44(6): 1947-1959. https://doi.org/10.2135/cropsci2004.1947

Yang, J., Li, Y., Cao, H., Yao, H., Han, W. & Sun, S. 2019. Yield-maturity relationship of summer maize from 2003 to 2017 in the Huanghuaihai plain of China. Scientific Reports 9: 11417.  https://doi.org/10.1038/s41598-019-47561-2

Yilmaz, C. & Gökmen, V. 2016. Chlorophyll. In Encyclopedia of Food and Health, edited by Caballero, B., Finglas, P.M. & Toldrá, F. Massachusetts: Academic Press. pp. 37-41.

Yoshida, S. 1981. Fundamentals of Rice Crop Science. Los Banos: IRRI. p. 269.

Zain, N.A.M., Ismail, M.R., Mahmood, M., Puteh, A. & Ibrahim, M.H. 2014. Alleviation of water stress effects on MR220 rice by application of periodical water stress and potassium fertilization. Molecules 19(2): 1795-1819.  https://doi.org/10.3390/molecules19021795

Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F. & Wu, J. 2020. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 12(8): 2127. https://doi.org/10.3390/w12082127

Zulkafli, Z., Muharam, F.M., Raffar, N., Jajarmizadeh, A., Abdi, M.J., Rehan, B.M. & Nurulhuda, K. 2021. Contrasting influences of seasonal and intra-seasonal hydroclimatic variabilities on the irrigated rice paddies of Northern Peninsular Malaysia for weather index insurance design. Sustainability 13(9): 5207. https://doi.org/10.3390/su13095207

 

*Corresponding author; email: razi@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next